Advertisements

We're a little crazy, about science!

Move over solar pannels, introducing spray-on solar cells

spray paint solar cell

Solar panels, they are big, heavy, cannot flex, and are still very inefficient. While efficiency isn’t the big issue, flexibility has relegated solar panels to rooftops and solar farms. Well that is until now, researchers have just invented a new way to spray solar cells onto flexible surfaces using miniscule light-sensitive materials known as colloidal quantum dots (CQDs)—a major step toward making spray-on solar cells easy and cheap to manufacture.

“My dream is that one day you’ll have two technicians with Ghostbusters backpacks come to your house and spray your roof,” says Illan Kramer, a post-doctoral fellow with The Edward S. Rogers Sr. Department of Electrical & Computer Engineering at the University of Toronto and IBM Canada’s Research and Development Centre.

Solar-sensitive CQDs printed onto a flexible film could be used to coat all kinds of weirdly shaped surfaces, from patio furniture to an airplane’s wing. A surface the size of your car’s roof wrapped with CQD-coated film would produce enough energy to power three 100-Watt light bulbs—or 24 compact fluorescents.

He calls his system sprayLD, a play on the manufacturing process called ALD, short for atomic layer deposition, in which materials are laid down on a surface one atom-thickness at a time.

Until now, it was only possible to incorporate light-sensitive CQDs onto surfaces through batch processing—an inefficient, slow and expensive assembly-line approach to chemical coating. SprayLD blasts a liquid containing CQDs directly onto flexible surfaces, such as film or plastic, like printing a newspaper by applying ink onto a roll of paper. This roll-to-roll coating method makes incorporating solar cells into existing manufacturing processes much simpler.

In not one, but two recent papers, Kramer showed that the sprayLD method can be used on flexible materials without any major loss in solar-cell efficiency.

Kramer built his sprayLD device using parts that are readily available and rather affordable—he sourced a spray nozzle used in steel mills to cool steel with a fine mist of water, and a few regular air brushes from an art store.

“This is something you can build in a Junkyard Wars fashion, which is basically how we did it,” says Kramer. “We think of this as a no-compromise solution for shifting from batch processing to roll-to-roll.”

“As quantum dot solar technology advances rapidly in performance, it’s important to determine how to scale them and make this new class of solar technologies manufacturable,” said Professor Ted Sargent, vice dean.

“We were thrilled when this attractively manufacturable spray-coating process also led to superior performance devices showing improved control and purity.”

In a third paper the team used IBM’s BlueGeneQ supercomputer to model how and why the sprayed CQDs perform just as well as—and in some cases better than—their batch-processed counterparts.

While they are still not quite at the manufacturing stages, this will make solar much easier to implement in not only homes, but electronics and possibly even aircraft as well. An exciting advancement for the future indeed!

Sources
Kramer, I., Moreno-Bautista, G., Minor, J., Kopilovic, D., & Sargent, E. (2014). Colloidal quantum dot solar cells on curved and flexible substrates Applied Physics Letters, 105 (16) DOI: 10.1063/1.4898635

Carey GH, Kramer IJ, Kanjanaboos P, Moreno-Bautista G, Voznyy O, Rollny L, Tang JA, Hoogland S, & Sargent EH (2014). Electronically active impurities in colloidal quantum dot solids. ACS nano, 8 (11), 11763-9 PMID: 25376698

Kramer, I., Minor, J., Moreno-Bautista, G., Rollny, L., Kanjanaboos, P., Kopilovic, D., Thon, S., Carey, G., Chou, K., Zhitomirsky, D., Amassian, A., & Sargent, E. (2014). Efficient Spray-Coated Colloidal Quantum Dot Solar Cells Advanced Materials DOI: 10.1002/adma.201403281

Advertisements

One response

  1. Pingback: ScienceSeeker Editor’s Selections December 7-13, 2014 |

But enough about us, what about you?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s