Advertisements

We're a little crazy, about science!

HIV and Dementia

dementia-illustration

With the introduction of combination antiretroviral therapy (or cART) during the mid-90s, the life expectancy of HIV patients has significantly improved. An unfortunate side effect of this is that long-term complications are becoming more relevant: almost every second HIV patient is affected by neurocognitive disorders, which can lead to dementia. It has not as yet been fully understood how these disorders occur, but new research is shining a light on the culprit.

Researchers from Bochum have now successfully demonstrated that infected cells activate specific immune cells in a patient’s brain, which subsequently display harmful behaviour and lead to the destruction of neurons. These findings may help develop biomarkers to identify risk patients and to make a therapeutic strategy possible in the long term.

“HIV-associated neurocognitive disorders” (or HAND since we need to shorten everything in science) include disorders of the cognitive functions, motor capacities as well as behavioural changes. How exactly HAND occur has not, as yet, been fully understood.

“Scientists assume that HIV is harmful to cells directly and that is also triggers indirect mechanisms that lead to nerve cell damage,” explains Dr Simon Faissner.

The researchers strongly suspect that, once activated in the brain and the spinal cord, immune cells keep up a chronic inflammation level which then results in the destruction of nerve cells. An immune activation in peripheral tissue as well as therapeutic consequences may likewise contribute to nerve cell damage in the brain.

The HIV virus (yes that is a little redundant) overcomes the blood-brain barrier hitchhiking on infected immune cells, the monocytes and probably the T cells. The researchers from Bochum tested the hypothesis that HIV-infected monocytes activate specific immune cells in the brain, the so-called microglial cells. These cells, in turn, respond by releasing harmful substances, such as reactive oxygen metabolites and inflammatory signalling molecules, i.e. cytokines.

To test this hypothesis, the researchers developed a cell culture system in which they initially examined the effect of HIV-infected monocytes on microglial cells. The researchers simulated the individual steps of HIV infection and measured the volume of the cytokines released at each stage. Thus, they were able to demonstrate that releasing the viral RNA in the monocytes was a sufficient trigger for maximal microglial activation.

Subsequent infection phases – reverse transcription into DNA and the resulting formation of HIV proteins – did not augment activation any further.

In the second step, they analysed nerve cells from rat brains to determine if the substances released by the microglial cells could lead to cell death. Compared with the control group, the number of cell deaths was indeed twice as high. Studies of liquor cerebrospinalis received from HIV-infected patients have shown a positive correlation with marker of neuronal degeneration in patients who did not as yet present any neurocognitive disorders.

“Thanks to our research, we have gained a better understanding of the mechanisms of HIV-associated neurodegeneration,” concludes Prof Dr Andrew Chan.

“These results are likely to contribute to HAND biomarkers becoming established. In the long term, these data will be used to develop therapeutic strategies aiming at retarding HAND progression in HIV-infected patients.”

Starting points may include activation of microglial cells — which is a method that is applied in other autoimmune diseases of the central nervous system, for example in multiple sclerosis. In any case this new understanding will hopefully lead to better treatment and subsequently better patient care while the world is waiting for a long deserved cure.

Sources
Faissner S, Ambrosius B, Schanzmann I, Grewe B, Potthoff A, Münch J, Sure U, Gramberg T, Wittmann S, Brockmeyer N, Uberla K, Gold R, Grunwald T, & Chan A (2014). Cytoplasmic HIV-RNA in monocytes determines microglial activation and neuronal cell death in HIV-associated neurodegeneration. Experimental neurology PMID: 25150097

Advertisements

But enough about us, what about you?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s