Advertisements

We're a little crazy, about science!

Oligodendrocyte selectively myelinates a particular set of axons in the white matter

axon

There are three kinds of glial cells in the brain, oligodendrocyte, astrocyte and microglia. Oligodendrocytes myelinate neuronal axons to increase conduction velocity of neuronal impulses. A Japanese research team found a characteristic feature of oligodendrocytes that selectively myelinate a particular set of neuronal axons.

It is known that maturation of oligodendrocyte is necessary for motor skill learning. The structure of the white matter changes after motor skill learning (e.g., juggling or playing piano). These reports suggest that a single oligodendrocytes selectively myelinate a particular set of axons. In addition, oligodendrocyte dysfunction causes severe neurological disorders, such as multiple sclerosis.

So, better understanding of interaction between oligodendrocytes and neuronal axons is highly desired. However, it was difficult to identify interaction between oligodendrocyte and neuronal axons in the brain because the high density of oligodendrocytes in the white matter prevents us from detecting precise morphology of each oligodendrocyte.

The research group established a novel method for detecting the axons myelinated by a single oligodendrocyte. This method uses three kinds of viral vectors to label axons derived from multiple brain regions and oligodendrocytes in the white matter. Using this method, they found that some populations of oligodendrocytes in the corpus callosum selectively myelinated axons derived from motor cortex or sensory cortex. Moreover, the newly established method is a versatile tool for analyzing precise morphology of each oligodendrocyte in animal models of demyelinating disorders and addressing the role of oligodendrocyte in higher brain functions. Image credit goes to: NIPS/NINS

The research group established a novel method for detecting the axons myelinated by a single oligodendrocyte. This method uses three kinds of viral vectors to label axons derived from multiple brain regions and oligodendrocytes in the white matter. Using this method, they found that some populations of oligodendrocytes in the corpus callosum selectively myelinated axons derived from motor cortex or sensory cortex. Moreover, the newly established method is a versatile tool for analyzing precise morphology of each oligodendrocyte in animal models of demyelinating disorders and addressing the role of oligodendrocyte in higher brain functions.
Image credit goes to: NIPS/NINS

The Japanese research group found one of the viral vectors labels single oligodendrocytes in the white matter. Using multiple viral vector injections, neuronal axons derived from distinct brain region (motor cortex or sensory cortex) and oligodendrocytes in the white matter were simultaneously labeled. Surprisingly, the research group found that oligodendrocyte did not just ensheath axons randomly, but some oligodendrocytes selectively myelinated axons from a particular brain region.

This method developed by the research group can be available for demyelinating animal model to assess demyelinating diseases.

“Now, we plan to analyze oligodendrocyte morphology and myelination in demyelinating mouse models” corresponding author Dr. Shimizu says.

“Furthermore, axon selective myelination for a specific neuronal subtype found in this study encourages us to investigate physiological relevance of multiple myelination to higher brain function.”

Sources:
Osanai, Y., Shimizu, T., Mori, T., Yoshimura, Y., Hatanaka, N., Nambu, A., Kimori, Y., Koyama, S., Kobayashi, K., & Ikenaka, K. (2016). Rabies virus-mediated oligodendrocyte labeling reveals a single oligodendrocyte myelinates axons from distinct brain regions Glia DOI: 10.1002/glia.23076

Advertisements

But enough about us, what about you?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s