We're a little crazy, about science!

Black hole hunters tackle a cosmic conundrum

Henize 2-10 galaxy

Image credit goes to : NASA

While mass media was busy misquoting Stephen Hawking and arguing about black holes, astrophysicists have been hard at work trying to solve still unanswered questions about them. Now a team has not only proven that a supermassive black hole exists in a place where it isn’t supposed to be, but in doing so have opened a new door to what things were like in the early universe.

Henize 2-10 is a small irregular galaxy that is not too far away in astronomical terms — 30 million light-years.

“This is a dwarf starburst galaxy — a small galaxy with regions of very rapid star formation — about 10 percent of the size of our own Milky Way,” says co-author Ryan Hickox.

“If you look at it, it’s a blob, but it surprisingly harbors a central black hole.”

The team says that here may be similar small galaxies in the known universe, but this is one of the only ones close enough to allow detailed study. The researchers have now analyzed a series of four X-ray observations of Henize 2-10 using three space telescopes over 13 years, providing conclusive evidence for the existence of a black hole.

Suspicions about Henize 2-10 first arose in 2011 when another team, that included some of the co-authors, first looked at galaxy Henize 2-10 and tried to explain its behavior. The observed dual emissions of X-ray and radio waves, often associated with a black hole, gave credence to the presence of one. The instruments utilized were Japan’s Advanced Satellite for Cosmology and Astrophysics (1997), the European Space Agency’s XMM-Newton (2004, 2011) and NASA’s Chandra X-ray Observatory (2001).

“The galaxy was bright in 2001, but it has gotten less bright over time,” says Hickox.

“This is not consistent with being powered only by star formation processes, so it almost certainly had to have a small supermassive black hole — small compared to the largest supermassive black holes in massive elliptical galaxies, but is still a million times the mass of the sun.”

A characteristic of supermassive black holes is that they do change with time — not a huge amount.

“And that is exactly what Tom Whalen found,” explains Hickox.

“This variability definitely tells us that the emission is coming from a compact source at the center of this system, consistent with it being a supermassive black hole.”

While supermassive black holes are typically found in the central bulges of galaxies, Henize 2-10 has no bulge. All the associations that people have made between galaxies and black holes tell us there ought to be no black hole in this system, but the team has proven otherwise.

A big question is where black holes come from.

“When people try to simulate where the galaxies come from, you have to put in these black holes at the beginning, but we don’t really know what the conditions were. These dwarf starburst galaxies are the closest analogs we have in the universe around us now, to the first galaxies early in the universe,” says Whalen.

“Our results confirm that nearby star-forming galaxies can indeed form massive black holes and that by implication so can their primordial counterparts,” the authors conclude.

“Studying those to get some sense of what might have happened very early in the universe is very powerful,” says Hickox.

Thomas J. Whalen, Ryan C. Hickox, Amy E. Reines, Jenny E. Greene, Gregory R. Sivakoff, Kelsey E. Johnson, David M. Alexander & Andy D. Goulding (2015). Variable Hard X-ray Emission from the Candidate Accreting Black Hole in
Dwarf Galaxy Henize 2-10, The Astrophysical journal , arXiv:


But enough about us, what about you?

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s