Advertisements

We're a little crazy, about science!

Could flies help us understand brain injuries?

traumatic brain injury

Each year, an estimated 1.7 million people in the United States sustain traumatic brain injuries (TBIs), according to the U.S. Centers for Disease Control and Prevention. These injuries occur most frequently from falling, but can also result from military combat, car accidents, contact sports or domestic abuse. Recently, physicians and researchers have become increasingly concerned that even mild cases of repetitive brain trauma could have long-term, unanticipated consequences.

Given the prevalence of these injuries, it’s surprising that the genes and cellular pathways that can blunt TBI’s harmfulness are relatively unknown. A new study suggests that using fruit flies as a TBI model may hold the key to identifying important genes and pathways that promote the repair of and minimize damage to the nervous system.

“Fruit flies actually have a very complex nervous system,” said Kim Finley, the study’s co-lead author.

“They are also an incredible model system that has been used for over 100 years for genetic studies, and more recently to understand the genes that maintain a healthy brain.”

In humans, changes in mood, headaches and sleep problems are just a few of the possible symptoms associated with suffering mild traumatic brain injury. The timeline for these symptoms can vary greatly: Some people experience them immediately following injury, while others may develop problems many years after.

Finley noted that because fruit flies grow old quickly, observing them allows researchers to rapidly study the long-term consequences of traumatic brain injury.

“Traits that might take 40 years to develop in people can occur in flies within two weeks,” she said.

To test whether flies can be used to model traumatic brain injuries, Finley and colleagues used an automated system to vigorously shake and traumatize thousands of fruit flies.

“Fruit flies come out of this mild trauma and appear perfectly normal,” explained Eric Ratliff, an adjunct assistant professor at SDSU and the study’s other co-lead author.

“However, the flies quickly begin to show signs of decline, similar to problems found in people who have been exposed to head injuries.”

In their study, injured fruit flies showed damage to neurons within the brain, as well as an accumulation of a protein called hyper-phosphorylated Tau, a hallmark feature of chronic traumatic encephalopathy (CTE).

Furthermore, injured flies also began to experience insomnia and their normal sleep patterns deteriorated. The results suggest that studying traumatic injury in fruit flies may indeed reveal genetic and cellular factors that can improve the brain’s resilience to injuries.

“It’s really a unique model,” Finley said. “We’ve developed it to be reliable, inexpensive, and fast.”

Sources:
Barekat, A., Gonzalez, A., Mauntz, R., Kotzebue, R., Molina, B., El-Mecharrafie, N., Conner, C., Garza, S., Melkani, G., Joiner, W., Lipinski, M., Finley, K., & Ratliff, E. (2016). Using Drosophila as an integrated model to study mild repetitive traumatic brain injury Scientific Reports, 6 DOI: 10.1038/srep25252

Advertisements

One response

  1. Hailey Chesser

    The effects and recovery from brain damage has been a great topic of discussion since the 1800s. One of the events footing this research included Paul Broca’s discovery that damage in the part of the left frontal cortex seemed to result in a lapse in ability to produce speech. This changed the way we looked at neurology! The idea that certain brain areas were connected to specific functions resulted in new advancements in how we conduct neurological research. The fact that this study was able to produce similar traumatic effects in fruit flies that occur in human brains during traumatic brain injuries (TBIs) with both the damage to the neurons themselves and also the accumulation of hyper-phosphorylated Tau shows a great improvement in our ability to find cost-effective, innovative, and ethical means by which to study the recovery of and nature of brain injuries.

    June 3, 2016 at 5:58 am

But enough about us, what about you?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s