We're a little crazy, about science!

Your brain and the ‘neuronal big bang’

Human brain

Our brain is home to different types of neurons, each with their own genetic signature that defines their function. These neurons are derived from progenitor cells, which are specialized stem cells that have the ability to divide to give rise to neurons. Neuroscientists have shed light on the mechanisms that allow progenitors to generate neurons.

By developing a novel technology called FlashTag that enables them to isolate and visualize neurons at the very moment they are born, they have deciphered the basic genetic code allowing the construction of a neuron. This discovery allows not only to understand how our brain develops, but also how to use this code to reconstruct neurons from stem cells. Researchers will now be able to better understand the mechanisms underlying neurological diseases such as autism and schizophrenia.

The researchers who published the study also developed the technology they termed FlashTag, which visualizes neurons as they are being born. Using this approach, at the very moment where a progenitor divides, it is tagged with a fluorescent marker that persists in its progeny. Scientists can then visualize and isolate newborn neurons in order to dynamically observe which genes are expressed in the first few hours of their existence. Over time, they can then study their evolution and changes in gene expression.

“Previously, we only had a few photos to reconstruct the history of neurons, which left a lot of room for speculation. Thanks to FlashTag, there is now a full genetic movie unfolding before our eyes.”

“Every instant becomes visible from the very beginning, which allows us to understand the developmental scenario at play, identify the main characters, their interactions and their incentives,” notes Denis Jabaudon.

Working in the cerebral cortex of the mouse, the scientists have thus identified the key genes to neuronal development, and demonstrated that their expression dynamics is essential for the brain to develop normally.

This discovery, by giving access to the primordial code of the formation of neurons, helps us to understand how neurons function in the adult brain. And it appears that several of these original genes are also involved in neurodevelopmental and neurodegenerative diseases, which can occur many years later.

This suggests that a predisposition may be present from the very first moments in the existence of neurons, and that environmental factors can then impact on how diseases may develop later on. By understanding the genetic choreography of neurons, the researchers can therefore observe how these genes behave from the start, and identify potential anomalies predicting diseases.

After successfully reading this genetic code, the scientists we able to rewrite it in newborn neurons. By altering the expression of certain genes, they were able to accelerate neuronal growth, thus altering the developmental script. With FlashTag, it is now possible to isolate newborn neurons and recreate cerebral circuits in vitro, which enables scientists to test their function as well as to develop new treatments.

The UNIGE team posted a website where it is possible to enter the name of a gene and observe how it is expressed, and how it interacts with other genes.

“Each research team can only focus on a handful of genes at a time, while our genome is made up of close to 20,000 genes. We therefore made our tool available for other researchers to use it, in a fully open way,” highlights Denis Jabaudon.

Ludovic Telley, Subashika Govindan, Julien Prados, Isabelle Stevant, Serge Nef, Emmanouil Dermitzakis, Alexandre Dayer, & Denis Jabaudon (2016). Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex Science : 10.1126/science.aad8361

But enough about us, what about you?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s