Advertisements

We're a little crazy, about science!

Antibody therapy opens door to potential new treatment for HIV

HIV spreading

The development of antiretroviral therapy, a combination of drugs that slows the replication of HIV in the body, has transformed the treatment of this infection. What was once a certain death sentence is now a chronic condition that people can live with for decades. But this therapy has drawbacks. There are side effects, including kidney problems, decreased bone density, and gastrointestinal problems. And if a person discontinues his or her treatment, even missing a few doses, the level of the virus in the body is able to rebound quickly.

Researchers are developing a new kind of treatment, an antibody-based drug that may provide a better strategy for long-term control of HIV. Recent findings from a Phase 1 clinical trial offer new insights about how the antibody functions.

“This study provides evidence that a single dose of an antibody stimulates patients’ immune response, enabling them to make new or better antibodies against the virus,” explains Till Schoofs, a postdoctoral fellow and one of the study’s first authors.

“We reported last year that this treatment can greatly reduce the amount of virus that’s present in someone’s blood,” Dr. Schoofs adds, “but we wanted to follow the patients for a longer period of time to study how their immune systems were adapting to the new therapy.”

The molecule used in the research, 3BNC117, is called a broadly neutralizing antibody because it has the ability to fight a wide range of HIV strains. Researchers isolated it several years ago from an HIV-infected patient whose immune system had an exceptional ability to neutralize HIV in the blood by preventing the virus from infecting and destroying a specific type of immune cells, called CD4 cells, in patients. The destruction of CD4 cells is a hallmark of AIDS.

Early studies showed that 3BNC117 can neutralize more than 80 percent of HIV strains that are found around the world. The investigators therefore theorized that giving the antibody to patients would help them to fight the virus as well.

The clinical trial included 15 patients who had high levels of the virus in their blood, and 12 other patients whose virus levels were being controlled with antiretroviral therapy (ART). The majority of trial participants were treated at The Rockefeller University Hospital. The patients were infused with a single dose of 3BNC117 and were monitored over a six-month period.

The investigators found that 14 out of 15 patients who had high levels of the virus at the time they were given the antibody were making new antibodies that were able to neutralize a number of different strains of HIV.

“It usually takes several years for the body to begin to make good antibodies against HIV,” Schoofs says.

“So there might be an even better effect later on, especially if patients are given more than one dose of 3BNC117.”

The next steps in this research are to test 3BNC117 in combination with other antibodies that target HIV, to determine whether an even stronger antiviral effect can be found. The researchers are also conducting a Phase 2 trial in which patients receiving ART are switched to antibody treatment.

In a companion study, the investigators wanted to determine what further benefits treatment with 3BNC117 may have over ART.

They looked at the results of the clinical trial, and used a mathematical model of HIV dynamics to predict how the patients’ levels of HIV would have fared if 3BNC117 did nothing else than to neutralize HIV in the blood and block new infection. Their analysis showed that neutralization of the virus alone doesn’t explain the steep drop in the virus levels observed in patients–leading the scientists to suspect that there must be another component to the antibody’s efficacy.

Working in a mouse model, the researchers saw evidence that 3BNC117 was able to engage the animals’ immune cells and accelerate their clearance of HIV-infected cells.

“This shows that the antibody not only can exert pressure on the virus, but also can shorten the survival of infected cells,” says first author Ching-Lan Lu.

“Our results explain why post-exposure prophylaxis”–short-term treatment after exposure to HIV to reduce infection–“with antibodies is more effective than ART in our mouse models.”

In addition, they could potentially make it possible to address a major obstacle to curing HIV: the virus’s ability to establish a latent reservoir soon after infection, and so hide out in the body and evade treatment. A follow-up clinical study is currently underway at Rockefeller to assess whether offering antibody drugs to patients receiving ART can help reduce or alter their HIV reservoirs.

Sources:
Schoofs, T., Klein, F., Braunschweig, M., Kreider, E., Feldmann, A., Nogueira, L., Oliveira, T., Lorenzi, J., Parrish, E., Learn, G., West, A., Bjorkman, P., Schlesinger, S., Seaman, M., Czartoski, J., McElrath, M., Pfeifer, N., Hahn, B., Caskey, M., & Nussenzweig, M. (2016). HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1 Science DOI: 10.1126/science.aaf0972

Lu, C., Murakowski, D., Bournazos, S., Schoofs, T., Sarkar, D., Halper-Stromberg, A., Horwitz, J., Nogueira, L., Golijanin, J., Gazumyan, A., Ravetch, J., Caskey, M., Chakraborty, A., & Nussenzweig, M. (2016). Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo Science DOI: 10.1126/science.aaf1279

Advertisements

3 responses

  1. This is an encouraging development. HIV+ for nearly 28 years, with an undetectable viral load for more than 11 years (due to strict HAART adherence), I have seen countless studies and clinical trials come and go. All seem promising at the onset only to have longer term findings fall short. I am not a cynic or a pessimist. I openly acknowledge (and appreciate) the progress science, technology and medicine have made with this virus. It’s just that incessant hope, unless regularly replenished, can leave many people drained. We simply have to focus forward with a commitment to eradicate. Thanks for continuing to inform and indirectly, inspire.

    May 7, 2016 at 12:57 pm

    • I’m sorry to hear about your consistent letdowns. But, congratulations on having an undetectable viral load! I’m constantly holding out hope that we can find someway to overcome HIV/AIDs, but I completely understand where you are coming from.

      It’s hard because as you may already know HIV– like the flu — it is a retrovirus so it mutates rather quickly making it hard to stop, but the new antibody therapies that are being tested might do the trick (finally).

      Personally, I am hoping for a gene therapy solution for us humans so we don’t have to worry about what the virus is doing at all, we can just eliminate its method of replication, but that is probably even further out than a possible vaccination or a antibody therapy solution. Mostly because while we are quick to modify the world around us, as a species we are hesitant to modify ourselves in the same manner.

      May 9, 2016 at 7:18 pm

      • Well said and appreciated. One clarification: while I have been through countless letdowns, I will at the same time acknowledge the amazing progress that have been made. If it weren’t for HAART regimens, few of we long-term survivors would be here either. Hear, hear to modifying ourselves!

        May 9, 2016 at 10:29 pm

But enough about us, what about you?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s