## Day 41: Connecting the Concepts

Maybe we shouldn’t phrase it this way, since there is still quite a few days left of 365DoA, but you made it to the end! No, not THE end, but if you’ve been following along the past few posts we’ve introduced several seemingly disparate concepts and said, “don’t worry they are related,” without telling you how. Well today, like a magician showing you how to pull a rabbit from a hat, let’s connect the dots and explain why we introduced all those concepts!*

## Day 40: The Normal Approximation (Poisson)

## Day 39: The Normal Approximation (De Moivre-Laplace)

## Day 38: The Poisson Distribution

## Day 37: Bayes’ Theorem

## Day 36: The uniform pdf

## Day 35: Example of the Gaussian pdf

## Day 34: Example of the Laplace pdf

## Day 33: Example of the Exponential pdf

Over the past couple of days, I’ve been talking about several different types of pdf and the associated C.D.F. Hopefully, we have a clear understanding of each of those concepts, for those of you scratching your head, I would recommend you start here at this other post. Otherwise, let’s (finally) look at a real life example using the exponential pdf!*

## Day 32: The Laplace pdf

Well here we are again… maybe unless you’re new, in which case welcome. If you are just joining us we are talking p.d.f. no not the file format, the probability density function version. If you’re new, you may want to start back here(ish) If not, then let’s talk the strangely similar laplace distribution.*

## Day 31: The Exponential pdf

Well, it has been a week, don’t even get me started. But if you’re here you don’t want to hear me complain about my week, that isn’t why we come together! Well today let’s do a bit of a dive into the exponential p.d.f. I hope you’ve brushed up, because this is going to get interesting.*

## Day 30: Confidence Interval

Day 30 already! Where does the time go? It feels like we just started this whole project and it probably wouldn’t be a good idea to look at the remaining time to completion, so let’s not and just enjoy the nice round 30. We will get back to our p.d.f another day, but today is going to be short. That’s what I usually say before typing out 10 pages worth of information so to avoid that, let’s touch on something important, but something I can do briefly. Today we’re talking about confidence intervals*

## Day 29: Probability density functions, Part 3

Well, apparently you guys really appreciated my probability density function posts. It’s good to see people interested in something a little less well-known (at least to me). So for those of you just joining us, you’ll want to start at part 1 here. For those of you who are keeping up with the posts, let’s review and then look at specific functions. Namely let’s start by going back to our gaussian distribution function and talk about what’s going on with that whole mess. It will be fun, so let’s do it!*

## Day 28: Cumulative Distribution Functions

Today we were going to do another deep dive into the p.d.f and C.D.F. relationship. Specifically today we were going to talk about specific p.d.f. functions and why we use them, however… I am not doing so hot today, so instead we are going to back track just a bit and talk about what how a C.D.F. differs from our p.d.f. even though we kind of covered it, it would be nice to be clear and I can do this in a (fairly) short post for the day. So that said, let’s get started and we will pick up our p.d.f. discussion next time (maybe).*

## Day 27: Probability density functions, Part 2

Oh hi didn’t see you there. Today is part 2 of the probability density functions notes (posts?), whatever we are calling these. You can read part 1 here as you should probably be familiar with the (super confusing) notation we use to describe our p.d.f. and our C.D.F. now that we’ve given that lovely disclaimer, let’s look once again at probability density functions!*

## Day 26: Probability density functions, Part 1

We are well on our way to wrapping up week 4, what a ride it’s been! It’s been a long day for me, so today might be short. However, I really, really, really want to break into probability density functions. This topic is going to be a bit more advanced than some of the things we’ve covered (IE more writing) so it will most definitely be broken up. Let’s look at why and discover the wonderful weirdness of probability density functions!*

## Day 25: The p-value

Now it seems like we are getting somewhere. Last post we covered z-score and you can read that if you haven’t already, it might be good to familiarize yourself with it since today we are going to talk p-value and the difference between z-score and p-value. That said, let’s dive in and look at the value in the p-value.*

## Day 24: The z-score

So if you recall from last post… well I’m not linking to it. It was hellishly personal and frankly I’m still attempting to recover from it. We’re going to take it light this time and we can do a deep dive into something in another post. For that reason, let’s talk about z-score and what exactly it is, I mean we used it in this post and never defined it formally, so let’s do that. Let’s talk z-score!*