## Day #31 : The Exponential p.d.f. – 365 DoA

Well, it has been a week, don’t even get me started. But if you’re here you don’t want to hear me complain about my week, that isn’t why we come together! Well today let’s do a bit of a dive into the exponential p.d.f. I hope you’ve brushed up, because this is going to get interesting.*

## Day #30 : Confidence Interval – 365 DoA

Day 30 already! Where does the time go? It feels like we just started this whole project and it probably wouldn’t be a good idea to look at the remaining time to completion, so let’s not and just enjoy the nice round 30. We will get back to our p.d.f another day, but today is going to be short. That’s what I usually say before typing out 10 pages worth of information so to avoid that, let’s touch on something important, but something I can do briefly. Today we’re talking about confidence intervals*

## Day #29 : Probability density functions, Part 3 – 365 DoA

Well, apparently you guys really appreciated my probability density function posts. It’s good to see people interested in something a little less well-known (at least to me). So for those of you just joining us, you’ll want to start at part 1 here. For those of you who are keeping up with the posts, let’s review and then look at specific functions. Namely let’s start by going back to our gaussian distribution function and talk about what’s going on with that whole mess. It will be fun, so let’s do it!*

## Day #28 : Cumulative Distribution Functions – 365 DoA

Today we were going to do another deep dive into the p.d.f and C.D.F. relationship. Specifically today we were going to talk about specific p.d.f. functions and why we use them, however… I am not doing so hot today, so instead we are going to back track just a bit and talk about what how a C.D.F. differs from our p.d.f. even though we kind of covered it, it would be nice to be clear and I can do this in a (fairly) short post for the day. So that said, let’s get started and we will pick up our p.d.f. discussion next time (maybe).*

## Day #27 : Probability density functions, Part 2 – 365 DoA

Oh hi didn’t see you there. Today is part 2 of the probability density functions notes (posts?), whatever we are calling these. You can read part 1 here as you should probably be familiar with the (super confusing) notation we use to describe our p.d.f. and our C.D.F. now that we’ve given that lovely disclaimer, let’s look once again at probability density functions!*

## Day #26 : Probability density functions, Part 1 – 365 DoA

We are well on our way to wrapping up week 4, what a ride it’s been! It’s been a long day for me, so today might be short. However, I really, really, really want to break into probability density functions. This topic is going to be a bit more advanced than some of the things we’ve covered (IE more writing) so it will most definitely be broken up. Let’s look at why and discover the wonderful weirdness of probability density functions!*

## Day #25 : The p-value – 365 DoA

Now it seems like we are getting somewhere. Last post we covered z-score and you can read that if you haven’t already, it might be good to familiarize yourself with it since today we are going to talk p-value and the difference between z-score and p-value. That said, let’s dive in and look at the value in the p-value.*

## Day #24 : The z-score – 365 DoA

So if you recall from last post… well I’m not linking to it. It was hellishly personal and frankly I’m still attempting to recover from it. We’re going to take it light this time and we can do a deep dive into something in another post. For that reason, let’s talk about z-score and what exactly it is, I mean we used it in this post and never defined it formally, so let’s do that. Let’s talk z-score!*

## Day #22 : Parametric vs. NonParametric Statistics – 365 DoA

Technically we *could *call this parametric statistics part 2. However, since we are covering nonparametric statistics and more importantly the difference between parametric and nonparametric statistics, it would seem that this title makes more sense. As usual with a continuation, you probably want to start at the beginning where we define parametric statistics. Ready to get started?*

## Day #21 : Defining Parametric Statistics – 365 DoA

Well my lovely readers, we’ve made it to the three week mark, 5.7% of the way through! Okay maybe that doesn’t seem like a big deal written like that, but hey it’s progress. So last post we had our independence day, or rather defined what it meant to have independent events vs. dependent events. We also said it was an important assumption in parametric statistics that our events are independent, but then we realized we never defined what parametric statistics even is, oops. So let’s stop dragging our feet and talk parametric statistics!*

## Day #20 : Independent Events – 365 DoA

Because we introduced the central limit theorem last post, it’s time to introduce another important concept. The idea of independent events, while this may seem intuitive, it is one of the assumptions we make in parametric statistics, another concept we will define, but for now let’s jump into independence.*

## Day #19 : The Central Limit theorem – 365 DoA

Well here we are again, if you recall from our last post, we talked Bonferroni Correction. You may also recall that when the post concluded, there was no real topic for today. Well after some ruminating, before we jump into more statistics, we should talk about the central limit theorem. So let’s do a quick dive into what that is and why you should know it!*

## Day #18 : The Bonferroni Correction – 365 DoA

By now we are masters of statistics… right? Okay, not really, but we are getting there. So far we’ve covered two types of errors, type 1 which you can read about here, and type 2 which you can read about here. Armed with this new knowledge we can break into a way to correct for type 1 errors that come about from multiple comparisons. Sound confusing? Well, not for long, let’s break it down and talk Bonferroni.*

## Day #17 : Type 2 errors – 365 DoA

Last post we did a quick bit on type 1 errors. As with anything, there is more than one way to make an error. Today we are talking type 2 errors! They are related in the sense and we’ll go over what that means and compare the two right… now!*

## Day #16 : Type 1 errors – 365 DoA

We did it, we cracked the coin conundrum! We managed the money mystery! We checked the change charade! We … well you get the idea. Last post we (finally) determined if our coin was bias or not. Don’t worry, I won’t spoil it for you if you haven’t read it yet. I actually enjoyed working through a completely made up problem, so if you haven’t read it, you really should. Today we’re going to talk dogs, you’ll see what I mean, so let’s dive in.*

## Day #15 : Significance, Part 3 – 365 DoA

It looks like we’ve arrived at part 3 of what is now officially a trilogy of posts on statistical significance. There is so much more to say I don’t want to quite call this the conclusion. Instead, let’s give a quick review of where we left off and we can get back to determining if an observed value is significant.*

## Day #14 : Significance, Part 2 – 365 DoA

Well here we are two weeks into 365DoA, I was excited until I realized that puts us at 3.8356% of the way done. So if you remember from last post we’ve started our significance talk, as in what does it mean to have a value that is significant, what does that mean exactly, and how to do we find out? Today is the day I finally break, we’re going to have to do some math. Despite my best efforts I don’t think we can finish the significance discussion without it and still manage to make sense. With that, let’s just dive in.*